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A continuum of modelling approaches

Source: my PhD thesis, so highly authoritative.
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EE and compartmental epidemic models

I Epidemics are often modelled using compartmental models.

I “mechanistic” reflection of disease spread.

I traditionally continuous-time and deterministic (ODEs).

I susceptible dynamics are key for model behaviour.
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EE and compartmental epidemic models (II)

I The endemic-epidemic model can be seen as a strongly
simplified discrete-time stochastic SIR model.

I see Bauer and Wakefield1 for detailed derivations.

I But ultimately the endemic-epidemic model is not a fully
mechanistic model.

I susceptible dynamics are ignored.

I many model elements are pragmatic rather than derived from
first principles (e.g., negative binomial distribution).

1C Bauer and J Wakefield (2018): Stratified space-time infectious disease
modelling, with an application to hand, foot and mouth disease in China.
JRSSA.
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EE vs TSIR

I If you are looking for a (univariate) model with susceptible
dynamics, Time Series SIR may be the right choice for you.

It | It−1,St−1 ∼ NegBin(λt , 1/It−1)

λt =
β

N
St−1I

α
t−1

St = St−1 − It .

I R package: Becker and Grenfell (2017): tsiR: An R package
for time-series Susceptible-Infected-Recovered models of
epidemics. PLOS One.
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EE and count time series models

I Technically, the EE model is a multivariate Integer-valued
Generalized Autoregressive Conditional Heteroscedasticity
(INGARCH) model.

I If you care about ergodicity, stationarity etc, there is a vast
literature on INGARCH models.

I Several R packages exist:
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What the EE model offers

I EE is more pragmatic than full mechanistic models.
I simple base model facilitates multivariate extension.
I latent susceptible dynamics are ignored.
I simple maximum likelihood inference can be used.

I EE is more tailored than generic count time series
models.
I identifiability ensured by “semi-mechanistic” parameterizations.
I complexity “spent” on epidemiologically relevant aspects.

I The EE model has a robust and longstanding
implementation in the R package surveillance.
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Reminder: Multivariate model structure

I The multivariate endemic-epidemic model is defined as

Yrt | past ∼ NegBin(µrt , ψr ) (1)

µrt = νrt + φrt ×
N∑

r ′=1

wr ′r × Yr ′,t−1 (2)

I As in surveillance within-region dynamics are given extra
flexibility we often also write

µrt = νrt︸︷︷︸
end

+ λrt × Yr ,t−1︸ ︷︷ ︸
ar

+φrt ×
∑
r ′ 6=r

wr ′r × Yr ′,t−1︸ ︷︷ ︸
ne

. (3)

I How do we handle all these parameters smartly?
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Semi-mechanistic elements

I The EE framework accommodates the following
epidemiologically meaningful mechanisms:

I seasonality (and other external drivers).

I simple but well-motivated mechanisms for spatial spread.

I integration of social contact data.

I encoding of generation times.

I spatially smooth efects (random effects).
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Seasonality and covariates

I Reminder: the parameters νr ,t , λr ,t and φr ,t are modelled in a
log-linear fashion to account for seasonality or other
covariates, e.g.,

log(νr ,t) = αi + γ sin(2πt/52) + δ cos(2πt/52).

I Often it makes sense to share some parameters (γ, δ) across
units r = 1, . . . ,N, while others are unit-specific (αi ).

formula_end <- addSeason2formula(

~0 + fe(1, unitSpecific = TRUE),

S = 1)

I Intuition: Seasonality and other covariates modify disease
import and transmission (≈ reproductive numbers).
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The power law

I A simple spatial coupling (and the default in surveillance)
is to set

wr ′r =

{
1 if r , r ′ are neighbours

0 else.

I A smart way to allow dependences between indirect
neighbours is a power law,

wr ′r ∝ (or ′r + 1)−ρ.

I Weights are typically normalized such that
∑N

r ′=1 wrr ′ = 1.

formula_ne <- list(f = ~0 + fe(1, unitSpecific = TRUE),

weights = W_powerlaw(maxlag = 5,

normalize = TRUE,

log = TRUE))
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Power law (II)

I Example: How does one district “distribute” its infectious
pressure under the power law (ρ = 2.5)?
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Why a power law?

I Empirical evidence indicates that “the distribution of
travelling distances decays as a power law.”
I D Brockmann, L Hufnagel, T Geisel (2006): The Scaling Laws of

Human Travel. Nature.

I In the EE framework, power laws have been found to
outperform other (more complex) specifications.

I S Meyer and L Held (2014): Power-law models for infectious disease
spread. AOAS.

I Geilhufe et al (2014): Power law approximations of movement
network data for modeling infectious disease spread. Biometrical
Journal.
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Social contact matrices

I When modelling spread across age groups rather than space,
social contact data can be used to parameterize the wr ′,r .2

I Side note: Pioneering work3 came from U Hasselt!

2
S Meyer and L Held (2017): Incorporating social contact data in spatio-temporal models for infectious

disease spread. Biostatistics.
3
Hens et al (2009): Estimating the impact of school closure on social mixing behaviour and the transmission

of close contact infections in eight European countries. BMC Infectious Diseases.
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Generation times

I Using the hhh4addon package, the EE model can be extended
to4

Yrt | past ∼ NegBin(µrt , ψr ) (4)

µrt = νrt + φrt ×
N∑

r ′=1

D∑
d=1

wr ′r × ud × Yr ′,t−d , (5)

where u1, . . . , uD is the generation time / serial interval
distribution.

4Bracher and Held (2020). Endemic-epidemic models with discrete-time
serial interval distributions for infectious disease prediction. IJF.
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Generation times (II)

I Generation time distributions can be fixed based on literature
estimates or estimated parametrically (?profile par lag),
e.g.,

ud = (1− π)k−1π

I Example: Dengue in Puerto Rico (Bracher and Held 2020).
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Spatial random effects

I For models with many strata and many parameters, spatially
structured (CAR) random effects can be used.

I Example from Meyer et al5:

5S Meyer et al (2017): Spatio-Temporal Analysis of Epidemic Phenomena
Using the R Package surveillance. JSS.
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What is the EE model used for?

I The EE model was conceived as a generic tool to “provide an
adequate fit, reliable one-step-ahead prediction intervals” and
“capture space–time dependence caused by the spatial spread
of a disease over time” (Held, Höhle, Hoffmann 2005).

I Over time it has been used for a variety of purposes (some
anticipated, some not).
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Forecasting

I Robert et al6 use the EE framework to generate national and
subnational-level forecasts of COVID-19 cases and deaths.

Image license: http://creativecommons.org/licenses/by/4.0/

6A Robert et al (2024): Predicting subnational incidence of COVID-19
cases and deaths in EU countries. BMC Infetious Diseases.

http://creativecommons.org/licenses/by/4.0/
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Forecasting (II)

I Within the RespiNow Consortium, we use the EE model e.g.,
to predict weekly SARI hospitalizations in Germany:
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Vaccination

I Herzog et al7 study the impact of measles vaccination
coverage on the occurrence of measles.

I Model for bi-weekly measles counts Yrt in 16 German states:

Yrt | past ∼ NegBin(µrt , ψr )

µrt = νrt + λr × Xt−1

log(νr,t)= αi + γ sin(2πt/26) + δ cos(2πt/26).

λr= β0 + β1 × log(proportion unvaccinated school starters in r)

I Result: “... a significant association between estimated
vaccination coverage at school entry and the overall incidence
of measles’.’

I Data are available in surveillance.

7S Herzog et al (2011): Heterogeneity in vaccination coverage explains the
size and occurrence of measles epidemics in German surveillance data. Epi&Inf.
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NPIs / counterfactuals

I Grimée et al8 study the impact of border closures between
Switzerland and Italy by producing conterfactual scenarios.

Image license: https://creativecommons.org/licenses/by/4.0/

8M Grimée et al (2022): Modelling the effect of a border closure between
Switzerland and Italy on the spatiotemporal spread of COVID-19 in
Switzerland. Spatial Statistics.

https://creativecommons.org/licenses/by/4.0/
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Estimation of local reproductive numbers

I Bauer and Wakefield (HMF disease) and Bracher and Held9

(rotavirus) estimate local effective reproductive numbers Rt .

I In multivariate models (vector notation),

E(Yt) | past = νt + ΦtYt−1,

the largest eigenvalue of Φt corresponds to Rt .

I Example: Rt of rotavirus in Berlin:

9
Bracher and Held (2020): A Marginal Moment Matching Approach for Fitting Endemic-Epidemic Models to

Underreported Disease Surveillance Counts. Biometrics.
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Tutorial

I We will now run through the development of a simple
multivariate model.

I Head over to https://codeberg.org/smeyer/hhh4geomed.

https://codeberg.org/smeyer/hhh4geomed
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Case study: Norovirus (and rotavirus) in Berlin
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